High-Performance and Self-Powered Deep UV Photodetectors Based on High Quality 2D Boron Nitride Nanosheets
نویسندگان
چکیده
High-quality two-dimensional (2D) crystalline boron nitride nanosheets (BNNSs) were grown on silicon wafers by using pulsed plasma beam deposition techniques. Self-powered deep ultraviolet (DUV) photodetectors (PDs) based on BNNSs with Schottky contact structures are designed and fabricated. By connecting the fabricated DUV photodetector to an ammeter, the response strength, response time and recovery time to different DUV wavelengths at different intensities have been characterized using the output short circuit photocurrent without a power supply. Furthermore, effects of temperature and plasma treatment on the induced photocurrent response of detectors have also been investigated. The experimental data clearly indicate that plasma treatment would significantly improve both induced photocurrent and response time. The BNNS-based DUV photodetector is demonstrated to possess excellent performance at a temperature up to 400 °C, including high sensitivity, high signal-to-noise ratio, high spectral selectivity, high speed, and high stability, which is better than almost all reported semiconducting nanomaterial-based self-powered photodetectors.
منابع مشابه
High Operating Temperature and Low Power Consumption Boron Nitride Nanosheets Based Broadband UV Photodetector
We extend our work on the use of digitally controlled pulsed laser plasma deposition (PLPD) technique to synthesize high quality, 2-dimensional single crystalline boron nitride nanosheets (BNNSs) at a low substrate temperature for applications in high-performance deep UV photodetectors. The obtained sample consists of a large amount of BNNSs partially overlapping one another with random orienta...
متن کاملGraphene/nitrogen-functionalized graphene quantum dot hybrid broadband photodetectors with a buffer layer of boron nitride nanosheets.
A high performance hybrid broadband photodetector with graphene/nitrogen-functionalized graphene quantum dots (NGQDs@GFET) is developed using boron nitride nanosheets (BN-NSs) as a buffer layer to facilitate the separation and transport of photoexcited carriers from the NGQD absorber. The NGQDs@GFET photodetector with the buffer layer of BN-NSs exhibits enhanced photoresponsivity and detectivit...
متن کاملHigh-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride.
Hexagonal boron nitride (h-BN), an isomorph of graphene, has attracted great attention owing to its potential applications as an ultra-flat substrate or gate dielectric layer in novel graphene-based devices. Besides, h-BN appears to be a promising material for deep ultraviolet (DUV) optoelectronic applications because of its extraordinary physical properties, such as wide band gap and high abso...
متن کاملSYNTHESIS AND FUNCTIONALIZATION OF ATOMIC LAYER BORON NITRIDE NANOSHEETS FOR ADVANCED MATERIAL APPLICATIONS Besides graphene, hexagonal boron nitride nanosheets
SYNTHESIS AND FUNCTIONALIZATION OF ATOMIC LAYER BORON NITRIDE NANOSHEETS FOR ADVANCED MATERIAL APPLICATIONS Report Title Besides graphene, hexagonal boron nitride nanosheets (BNNSs) are playing an excellent role for the next generation of 2-dimentional (2D) functional nanomaterials. Due to the similar lattice parameter and identical crystalline structure to that of graphene, BNNSs are often kno...
متن کاملLarge-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics.
Hexagonal boron nitride (h-BN) has received a great deal of attention as a substrate material for high-performance graphene electronics because it has an atomically smooth surface, lattice constant similar to that of graphene, large optical phonon modes, and a large electrical band gap. Herein, we report the large-scale synthesis of high-quality h-BN nanosheets in a chemical vapor deposition (C...
متن کامل